# Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 38» города Калуги

| ПРИНЯТА                              | УТВЕРЖДАЮ:                 |
|--------------------------------------|----------------------------|
| на заседании педагогического совета  | Директор МБОУ «СОШ № 38»   |
| МБОУ «СОШ № 38» г. Калуги            | г. Калуги                  |
|                                      | Приказ от 18 августа 2021г |
| Протокол от «18» августа 2021 г. № 8 | № 408                      |
|                                      | Матвеев М.С.               |
|                                      |                            |

# Рабочая программа

# учебного предмета «Химия» в 8 - 9 классе

В рамках реализации Национального проекта России «Образование» центра естественно - научной и технологической направленности «Точка роста» с использованием оборудования центра «Точка Роста»

Составитель: Панова Валентина Александровна

Рабочая программа учебного предмета «Химия» для 8-9 классов (далее — Рабочая программа по Химии) составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования (ФГОС ООО), утверждённым приказом Министерства образования и науки Российской Федерации от 17.12.2010 № 1897 (ред. 21.12.2020), с учётом примерной основной образовательной программы основного общего образования, одобренной Федеральным учебно-методическим объединением по общему образованию (протокол заседания от 08.04.2015 № 1/15), авторской программы по Химии для 8-9 классов под редакцией О.С. Габриеляна. Преподавание осуществляется по учебникам: «Химия 8» и «Химия 9» автор О.С. Габриелян издательство Дрофа.

Рабочая программа по Химии является неотъемлемой частью Образовательной программы ООО Школы и используется для составления календарно-тематического планирования учебного предмета на соответствующий учебный год.

Реализация Программы обеспечивает выполнение требований ФГОС ООО и достижение следующих основных целей ООО:

- обеспечение личностных результатов освоения Программы;
- обеспечение овладения учащимися основами читательской компетенции, приобретения ими навыков работы с информацией, участия в проектной деятельности как условие формирования у учащихся межпредметных понятий;
- формирование у учащихся у учащихся универсальных учебных действий (регулятивных, познавательных, коммуникативных);

в том числе с учётом специфики предмета.

# Изучение химии на ступени основного общего образования направлено на достижение следующих целей:

- 1) формирование у обучающихся умения видеть и понимать ценность образования, значимость химического знания для каждого человека независимо от его профессиональной деятельности; умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- 2) формирование у обучающихся целостного представления о мире и роли химии в создании современной естественно-научной картины мира; умения объяснять объекты и процессы окружающей действительности природной, социальной, культурной, технической среды, используя для этого химические знания;
- 3) приобретение обучающимися опыта разнообразной деятельности, познания и самопознания; ключевых навыков (ключевых компетентностей), имеющих универсальное значение для различных видов деятельности: решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, сотрудничества, безопасного обращения с веществами в повседневной жизни.

#### Общая характеристика учебного предмета Химия.

Особенности содержания обучения химии в основной школе обусловлены спецификой химии как науки и поставленными задачами. Основными проблемами химии являются изучение состава и строения веществ, зависимости их свойств от строения, получение веществ с заданными свойствами, исследование закономерностей химических реакций и путей управления ими в целях получения веществ, материалов, энергии. Поэтому в примерной программе по химии нашли отражение основные содержательные линии:

- вещество знания о составе и строении веществ, их важнейших физических и химических свойствах, биологическом действии;
- химическая реакция знания об условиях, в которых проявляются химические свойства веществ, способах управления химическими процессами;
- применение веществ знания и опыт практической деятельности с веществами, которые наиболее часто употребляются в повседневной жизни, широко используются в промышленности, сельском хозяйстве, на транспорте;
- язык химии система важнейших понятий химии и терминов, в которых они описываются, номенклатура неорганических веществ, т. е. их названия (в том числе и тривиальные), химические формулы и уравнения, а также правила перевода информации с естественного языка на язык химии и обратно.

Поскольку основные содержательные линии школьного курса химии тесно переплетены, в примерной программе содержание представлено не по линиям, а по разделам: «Основные понятия химии (уровень атомно-молекулярных представлений)», «Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение вещества», «Многообразие химических реакций», «Многообразие веществ».

#### Описание места учебного предмета Химия.

Особенности содержания курса «Химия» являются главной причиной того, что в базисном учебном (образовательном) плане этот предмет появляется последним в ряду естественно-научных дисциплин, поскольку для его освоения школьники должны обладать не только определенным запасом предварительных естественно-научных знаний, но и достаточно хорошо развитым абстрактным мышлением.

Примерная программа по химии для основного общего образования составлена из расчета часов, указанных в базисном учебном (образовательном) плане образовательных учреждений общего образования, с учетом 25 % времени, отводимого на вариативную часть программы, содержание которой формируется авторами рабочих программ. Инвариантная часть любого авторского курса химии для основной школы должна полностью включать в себя содержание примерной программы, на освоение которой отводится 105 ч. Оставшиеся 35 ч авторы рабочих программ могут использовать для введения дополнительного содержания обучения.

#### Описание ценностных ориентиров содержания учебного предмета Химия.

Планируемые (личностные, метапредметные и предметные) результаты освоения учебного предмета Химия.

Деятельность образовательного учреждения общего образования в обучении химии направлена на достижение обучающимися следующих <u>личностных</u> результатов:

- 1) в ценностно-ориентационной сфере чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность;
- 2) в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- 3) в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

<u>Метапредметными</u> результатами освоения выпускниками основной школы программы по химии являются:

- 1) использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- 2) использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
  - 3) умение генерировать идеи и определять средства, необходимые для их реализации;
- 4) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
  - 5) использование различных источников для получения химической информации.

<u>Предметными</u> результатами освоения выпускниками основной школы программы по химии являются:

- 1. В познавательной сфере:
- давать определения изученных понятий: вещество (химический элемент, атом, ион, молекула, кристаллическая решетка, вещество, простые и сложные вещества, химическая формула, относительная атомная масса, относительная молекулярная масса, оксиды, кислоты, основания, соли, амфотерность, индикатор, периодический закон, периодическая система, периодическая таблица, изотопы, химическая связь, электроотрицательность, степень окисления, электролит); химическая реакция (химическое уравнение, генетическая связь, окисление, восстановление, электролитическая диссоциация, скорость химической реакции);
- описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии;
- описывать и различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции;
  - классифицировать изученные объекты и явления;
- наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
- делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных;
- структурировать изученный материал и химическую информацию, полученную из других источников;
- моделировать строение атомов элементов первого третьего периодов (в рамках изученных положений теории Э. Резерфорда), строение простейших молекул.
  - 2. В ценностно-ориентационной сфере:
- анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ.
  - 3. В трудовой сфере:
  - проводить химический эксперимент.
  - 4. В сфере безопасности жизнедеятельности:
- оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

На базе центра «Точка роста» обеспечивается реализация образовательных программ естественно-научной и технологической направленностей, разработанных в соответствии с

требованиями законодательства в сфере образования с учётом рекомендаций Федерального стандарта учебного предмета «Химия».

Образовательная программа позволяет интегрировать реализуемые подходы, структуру и содержание при организации обучения химии в 8-9 классах, выстроенном на базе любого из доступных учебно-методических комплексов (УМК).

Использование оборудования «Точка роста» при реализации данной ОП позволяет создать условия:

- для расширения содержания школьного химического образования;
- для повышения познавательной активности обучающихся в естественно-научной области;
- для развития личности ребенка в процессе обучения химии, его способностей, формирования и удовлетворения социально значимых интересов и потребностей;
- для работы с одаренными школьниками, организации их развития в различных областях образовательной, творческой деятельности.

Для изучения предмета «Химия» на этапе основного общего образования отводится 140 часов:

8 класс - 70 часов, 9 класс - 70 часов.

Данная образовательная программа обеспечивает усвоение учащимися важнейших химических законов, теорий и понятий; формирует представление о роли химии в окружающем мире и жизни человека. При этом основное внимание уделяется сущности химических реакций и методам их осуществления.

Одним из основных принципов построения программы является принцип доступности. Экспериментальные данные, полученные учащимися при выполнении количественных опытов, позволяют учащимся самостоятельно делать выводы, выявлять закономерности. Подходы, заложенные в содержание программы курса, создают необходимые условия для системного усвоения учащимися основ науки, для обеспечения развивающего и воспитывающего воздействия обучения на личность учащегося. Формируемые знания должны стать основой системы убеждений школьника, центральным ядром его научного мировоззрения.

Примерное тематическое планирование 8-9 класс с использованием средств обучения и воспитания центра образования естественно-научной и технологической направленностей «Точка роста» смотри Приложение 1

Содержание учебного предмета Химия 8 - 9 класс.

8 класс (2 ч в неделю; всего 68 ч)

### Введение (5 ч)

Химия — наука о веществах, их свойствах и превращениях.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах.

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в XVI в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки — работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Расчетные задачи. 1. Нахождение относительной молекулярной массы вещества по его химической формуле. 2. Вычисление массовой доли химического элемента в веществе по его формуле.

*Практическая работа №1.* Правила техники безопасности при работе в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами.

#### TEMA 1

#### Атомы химических элементов (10 ч)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома — образование новых химических элементов.

Изменение числа нейтронов в ядре атома — образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных оболочек атомов химических элементов N = 1 - 20 периодической системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента — образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах.

Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой — образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов химических элементов-неметаллов между собой — образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи.

Взаимодействие атомов химических элементов-металлов между собой — образование металлических кристаллов. Понятие о металлической связи.

*Демонстрации*. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

#### TEMA 2

#### Простые вещества (7 ч)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества — металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества — неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ — аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Расчетные задачи.

- 1. Вычисление молярной массы веществ по химическим формулам.
- 2. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов », « постоянная Авогадро ».

Демонстрации. Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

#### TEMA 3

#### Соединения химических элементов (14 ч)

Степень окисления. Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния. Бинарные соединения: оксиды, хлориды, сульфиды и др. Составление их формул. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде.

Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток.

Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия «доля».

Расчетные задачи. 1. Расчет массовой и объемной долей компонентов смеси веществ. 2. Вычисление массовой доли вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Взрыв смеси водорода с воздухом. Способы разделения смесей. Дистилляция воды.

Лабораторные опыты.

- 1. Знакомство с образцами веществ разных классов.
- 2. Разделение смесей.

*Практическая работы:* №2 Анализ почвы и воды. №3. Приготовление раствора сахара и определение массовой доли его в растворе.

#### TEMA 4

#### Изменения, происходящие с веществами (12ч)

Понятие явлений как изменений, происходящих с веществами. Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, — физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, — химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо- и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты.

Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции.

Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения — электролиз воды. Реакции соединения — взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения — взаимодействие воды со щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

#### Расчетные задачи.

- 1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции.
- 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей.
- 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора и массовая доля растворенного вещества.

Демонстрации. Примеры физических явлений: а) плавление парафина; б) возгонка иода или бензойной кислоты; в) растворение перманганата калия; г) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) взаимодействие разбавленных кислот с металлами; з) разложение пероксида водорода; и) электролиз воды.

Лабораторные опыты.

- 3. Сравнение скорости испарения воды и спирта по исчезновению их капель на фильтровальной бумаге.
  - 4. Окисление меди в пламени спиртовки или горелки.
  - 5. Помутнение известковой воды от выдыхаемого углекислого газа.
  - 6. Получение углекислого газа взаимодействием соды и кислоты.
  - 7. Замещение меди в растворе хлорида меди (II) железом.

Практические работы

№4 Наблюдения за изменениями, происходящими с горящей свечой, и их описание. №5 Признаки химических реакций.

#### TEMA 5

Растворение. Растворы.

Свойства растворов электролитов (20 ч)

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями — реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании.

Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах.

Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ.

Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ — металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Демонстрации. Испытание веществ и их растворов на электропроводность. Движение окрашенных ионов в электрическом поле. Зависимость электропроводности уксусной кислоты от концентрации. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния. Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты.

- 8. Реакции, характерные для растворов кислот (соляной или серной).
- 9. Реакции, характерные для растворов щелочей (гидроксидов натрия или калия).
- 10. Получение и свойства нерастворимого основания, (например гидроксида меди(II)).
- 11. Реакции, характерные для растворов солей, (например для хлорида меди (II).
- 12. Реакции, характерные для основных оксидов (например, для оксида кальция).
- 13. Реакции, характерные для кислотных оксидов (например, для углекислого газа). Практические работы

№6. Свойства кислот, оснований, оксидов и солей.

№7. Решение экспериментальных задач.

9 класс (2 ч в неделю; всего 68 ч)

#### TEMA 1

Введение. Общая характеристика химических элементов и химических реакций. Периодический закон и Периодическая система химических элементов Д. И. Менделеева (10 ч)

Характеристика элемента по его положению в Периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и окисления-восстановления. Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента. Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Химическая организация живой и неживой природы. Химический состав ядра, мантии и земной коры. Химические элементы в клетках живых организмов. Макро- и микроэлементы. Обобщение сведений о химических реакциях. Классификация химических реакций по различным признакам: «число и состав реагирующих и образующихся веществ», «тепловой эффект», «направление», «изменение степеней окисления элементов, образующих реагирующие вещества», «фаза», «использование катализатора». Понятие о скорости химической реакции. Факторы, влияющие на скорость химических реакций. Катализаторы и катализ. Ингибиторы. Антиоксиданты.

#### Демонстрации.

Различные формы таблицы Д. И. Менделеева. Модели атомов элементов 1—3-го периодов. Модель строения земного шара (поперечный разрез). Зависимость скорости химической реакции от природы реагирующих веществ. Зависимость скорости химической реакции от концентрации реагирующих веществ. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ («кипящий слой»). Зависимость скорости химической реакции от температуры реагирующих веществ. Гомогенный и гетерогенный катализы. Ферментативный катализ. Ингибирование.

#### Лабораторные опыты.

- 1. Получение гидроксида цинка и исследование его свойств. 2.Моделирование построения Периодической системы химических элементов Д. И. Менделеева. 3. Замещение железом меди в растворе сульфата меди (II). 4. Зависимость скорости химической реакции от природы реагирующих веществ на примере взаимодействия кислот с металлами.
- 5. Зависимость скорости химической реакции от концентрации реагирующих веществ на примере взаимодействия цинка с соляной кислотой различной концентрации.
- 6. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ. 7. Моделирование «кипящего слоя». 8. Зависимость скорости химической реакции от температуры реагирующих веществ на примере взаимодействия оксида меди (II) с раствором серной кислоты различной температуры. 9. Разложение пероксида водорода с помощью оксида марганца (IV) и каталазы. 10. Обнаружение каталазы в некоторых пищевых продуктах. 11. Ингибирование взаимодействия кислот с металлами уротропином.

**Предметные результаты обучения** Учащийся должен *уметь:* 

использовать при характеристике превращений веществ понятия: «химическая реакция», «реакции соединения», «реакции разложения», «реакции обмена», «реакции замещения», «реакции нейтрализации», «экзотермические реакции», «эндотермические реакции», «обратимые реакции», «помогенные реакции», «гетерогенные реакции», «каталитические реакции», «некаталитические реакции», «скорость химической реакции», «катализатор»;

характеризовать химические элементы 1—3-го периодов по их положению в Периодической системе химических элементов Д. И. Менделеева: химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома (заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям, простое вещество, формула, название и тип высшего оксида и гидроксида, летучего водородного соединения (для неметаллов));

характеризовать общие химические свойства амфотерных оксидов и гидроксидов; приводить примеры реакций, подтверждающих химические свойства амфотерных оксидов и гидроксидов;

давать характеристику химических реакций по числу и составу исходных веществ и продуктов реакции; тепловому эффекту; направлению протекания реакции; изменению степеней окисления элементов; агрегатному состоянию исходных веществ; участию катализатора;

объяснять и приводить примеры влияния некоторых факторов (природа реагирующих веществ, концентрация веществ, давление, температура, катализатор, поверхность соприкосновения реагирующих веществ) на скорость химических реакций;

наблюдать и описывать уравнения реакций между веществами с помощью естественного (русского или родного) языка и языка химии;

проводить опыты, подтверждающие химические свойства амфотерных оксидов и гидроксидов; зависимость скорости химической реакции от различных факторов (природа реагирующих веществ, концентрация веществ, давление, температура, катализатор, поверхность соприкосновения реагирующих веществ).

#### Метапредметные результаты обучения

Учащийся должен уметь:

определять цель учебной деятельности с помощью учителя и самостоятельно, искать средства ее осуществления, работая по плану, сверять свои действия с целью и при необходимости исправлять ошибки с помощью учителя и самостоятельно;

составлять аннотацию текста:

создавать модели с выделением существенных характеристик объекта и представлением их в пространственно-графической или знаково-символической форме;

определять виды классификации (естественную и искусственную);

осуществлять прямое дедуктивное доказательство.

#### TEMA 2

#### Металлы (18 ч)

Положение металлов в Периодической системе химических элементов Д. И. Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей, а также в свете их положения в электрохимическом ряду

напряжений металлов. Коррозия металлов и способы борьбы с ней. Металлы в природе. Общие способы их получения.

**Общая характеристика щелочных металлов**. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы — простые вещества. Важнейшие соединения щелочных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

## Общая характеристика элементов главной подгруппы II группы.

Строение атомов. Щелочноземельные металлы — простые вещества. Важнейшие соединения щелочноземельных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты, фосфаты), их свойства и применение в народном хозяйстве.

#### Алюминий.

Строение атома, физические и химические свойства простого вещества. Соединения алюминия — оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

#### Железо.

Строение атома, физические и химические свойства простого вещества. Генетические ряды  ${\rm Fe}^{+2}\;$  и  ${\rm Fe}^{+3}$  .

Важнейшие соли железа. Значение железа и его соединений для природы и народного хозяйства.

#### Демонстрации.

Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой. Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с неметаллами. Получение гидроксидов железа (II) и (III).

#### Лабораторные опыты.

- 12. Взаимодействие растворов кислот и солей с металлами. 13. Ознакомление с рудами железа. 14. Окрашивание пламени солями щелочных металлов. 15. Взаимодействие кальция с водой. 16.Получение гидроксида кальция и исследование его свойств.
- 17. Получение гидроксида алюминия и исследование его свойств. 18. Взаимодействие железа с соляной кислотой. 19. Получение гидроксидов железа (II) и (III) и изучение их свойств.

#### Предметные результаты обучения

#### Учащийся должен *уметь*:

использовать при характеристике металлов и их соединений понятия: «металлы», «ряд активности металлов», «щелочные металлы», «щелочноземельные металлы», использовать их при характеристике металлов; давать характеристику химических элементов-металлов (щелочных металлов, магния, кальция, алюминия, железа) по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома (заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям), простое вещество, формула, название и тип высшего оксида и гидроксида);

называть соединения металлов и составлять их формулы по названию;

характеризовать строение, общие физические и химические свойства простых веществметаллов;

объяснять зависимость свойств (или предсказывать свойства) химических элементовметаллов (радиус, металлические свойства элементов, окислительно-восстановительные свойства элементов) и образуемых ими соединений (кислотно-основные свойства высших оксидов и гидроксидов, окислительно-восстановительные свойства) от положения в Периодической системе химических элементов Д. И. Менделеева;

описывать общие химические свойства металлов с помощью естественного (русского или родного) языка и языка химии;

составлять молекулярные уравнения реакций, характеризующих химические свойства металлов и их соединений, а также электронные уравнения процессов окислениявосстановления;

уравнения электролитической диссоциации; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов;

устанавливать причинно-следственные связи между строением атома, химической связью, типом кристаллической решетки металлов и их соединений, их общими физическими и химическими свойствами;

описывать химические свойства щелочных и щелочноземельных металлов, а также алюминия и железа и их соединений с помощью естественного (русского или родного) языка и языка химии;

выполнять, наблюдать и описывать химический эксперимент по распознаванию важнейших катионов металлов, гидроксид-ионов;

экспериментально исследовать свойства металлов и их соединений, решать экспериментальные задачи по теме «Металлы»;

описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;

проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием металлов и их соединений.

#### Метапредметные результаты обучения

Учащийся должен уметь:

работать по составленному плану, используя наряду с основными и дополнительные средства (справочную литературу, сложные приборы, средства ИКТ); с помощью учителя отбирать для решения учебных задач необходимые словари, энциклопедии, справочники, электронные диски;

сопоставлять и отбирать информацию, полученную из различных источников (словари, энциклопедии, справочники, электронные диски, сеть Интернет);

представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;

оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;

составлять рецензию на текст;

осуществлять доказательство от противного.

## Практикум 1. Свойства металлов и их соединений

1. Осуществление цепочки химических превращений. 2. Получение и свойства соединений металлов. 3. Решение экспериментальных задач на распознавание и получение соединений металлов.

#### Предметные результаты обучения

#### Учащийся должен уметь:

обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;

наблюдать за свойствами металлов и их соединений и явлениями, происходящими с ними;

описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;

делать выводы по результатам проведенного эксперимента.

#### Метапредметные результаты обучения

Учащийся должен уметь:

определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

#### TEMA 3

#### Неметаллы (30 ч)

Общая характеристика неметаллов: положение в Периодической системе химических элементов Д. И. Менделеева, особенности строения атомов, электроотрицательность (ЭО) как мера «неметалличности», ряд ЭО. Кристаллическое строение неметаллов — простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл» и «неметалл».

**Водород.** Положение водорода в Периодической системе химических элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

#### Вода.

Строение молекулы. Водородная химическая связь. Физические свойства воды. Аномалии свойств воды. Гидрофильные и гидрофобные вещества. Химические свойства воды. Круговорот воды в природе. Водоочистка. Аэрация воды. Бытовые фильтры. Минеральные воды. Дистиллированная вода, ее получение и применение.

#### Общая характеристика галогенов.

Строение атомов. Простые вещества и основные соединения галогенов, их свойства.

Краткие сведения о хлоре, броме, фторе и йоде. Применение галогенов и их соединений в народном хозяйстве.

#### Cepa.

Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (IV) и (VI), их получение, свойства и применение. Серная кислота и ее соли, их применение в народном хозяйстве. Производство серной кислоты.

#### Азот.

Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойства и применение. Оксиды азота (II) и (IV).

Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения.

#### Фосфор.

Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V) и ортофосфорная кислота, фосфаты. Фосфорные удобрения.

#### Углерод.

Строение атома, аллотропия, свойства модификаций, применение. Оксиды углерода (II) и (IV), их свойства и применение. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека.

#### Кремний.

Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности.

#### Демонстрации.

Образцы галогенов — простых веществ. Взаимодействие галогенов с натрием, с алюминием. Вытеснение хлором брома или иода из растворов их солей. Взаимодействие серы с металлами, водородом и кислородом. Взаимодействие концентрированной азотной кислоты с медью. Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

#### Лабораторные опыты.

- 20. Получение и распознавание водорода. 21. Исследование поверхностного натяжения воды. 22. Растворение перманганата калия или медного купороса в воде. 23. Гидратация обезвоженного сульфата меди (II). 24. Изготовление гипсового отпечатка.
- 25. Ознакомление с коллекцией бытовых фильтров. 26. Ознакомление с составом минеральной воды. 27. Качественная реакция на галогенид-ионы. 28. Получение и распознавание кислорода. 29. Горение серы на воздухе и в кислороде. 30.Свойства разбавленной серной кислоты. 31. Изучение свойств аммиака. 32. Распознавание солей аммония. 33. Свойства разбавленной азотной кислоты. 34. Взаимодействие концентрированной азотной кислоты с медью. 35. Горение фосфора на воздухе и в кислороде. 36. Распознавание фосфатов. 37. Горение угля в кислороде. 38. Получение угольной кислоты и изучение ее свойств. 39. Переход карбонатов в гидрокарбонаты.
- 40. Разложение гидрокарбоната натрия. 41. Получение кремневой кислоты и изучение ее свойств.

### Предметные результаты обучения

#### Учащийся **должен** *уметь*:

использовать при характеристике металлов и их соединений понятия: «неметаллы», «галогены», «аллотропные видоизменения», «жесткость воды», «временная жесткость воды», «постоянная жесткость воды», «общая жесткость воды»;

давать характеристику химических элементов-неметаллов (водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния) по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома (заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям), простое вещество, формула, название и тип высшего оксида и гидроксида, формула и характер летучего водородного соединения);

называть соединения неметаллов и составлять их формулы по названию;

характеризовать строение, общие физические и химические свойства простых веществнеметаллов;

объяснять зависимость свойств (или предсказывать свойства) химических элементовнеметаллов (радиус, неметаллические свойства элементов, окислительно-восстановительные

свойства элементов) и образуемых ими соединений (кислотно-основные свойства высших оксидов и гидроксидов, летучих водородных соединений, окислительно-восстановительные свойства) от положения в Периодической системе химических элементов Д. И. Менделеева;

описывать общие химические свойства неметаллов с помощью естественного (русского или родного) языка и языка химии;

составлять молекулярные уравнения реакций, характеризующих химические свойства неметаллов и их соединений, а также электронные уравнения процессов окисления-восстановления;

уравнения электролитической диссоциации; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов;

устанавливать причинно-следственные связи между строением атома, химической связью, типом кристаллической решетки неметаллов и их соединений, их общими физическими и химическими свойствами;

описывать химические свойства водорода, галогенов, кислорода, серы, азота, фосфора, графита, алмаза, кремния и их соединений с помощью естественного (русского или родного) языка и языка химии;

описывать способы устранения жесткости воды и выполнять соответствующий им химический эксперимент;

выполнять, наблюдать и описывать химический эксперимент по распознаванию ионов водорода и аммония, сульфат-, карбонат-, силикат-, фосфат-, хлорид-, бромид-, иодид-ионов;

экспериментально исследовать свойства металлов и их соединений, решать экспериментальные задачи по теме «Неметаллы»;

описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;

проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием неметаллов и их соединений.

#### Метапредметные результаты обучения

Учащийся должен уметь:

организовывать учебное взаимодействие в группе (распределять роли, договариваться друг с другом и т. д.);

предвидеть (прогнозировать) последствия коллективных решений;

понимать причины своего неуспеха и находить способы выхода из этой ситуации;

в диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев, совершенствовать критерии оценки и пользоваться ими в ходе оценки и самооценки;

отстаивать свою точку зрения, аргументируя ее;

подтверждать аргументы фактами;

критично относиться к своему мнению;

слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения;

составлять реферат по определенной форме;

осуществлять косвенное разделительное доказательство.

#### Практикум 2. Свойства соединений неметаллов

1. Решение экспериментальных задач по теме «Подгруппа галогенов». 2. Решение экспериментальных задач по теме «Подгруппа кислорода». 3. Решение экспериментальных

задач по теме «Подгруппа азота». 4. Решение экспериментальных задач по теме «Подгруппа углерода». 5. Получение, собирание и распознавание газов.

#### Предметные результаты обучения

Учащийся **должен** *уметь*:

обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;

наблюдать за свойствами неметаллов и их соединений и явлениями, происходящими с ними;

описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;

делать выводы по результатам проведенного эксперимента.

#### Метапредметные результаты обучения

Учащийся должен уметь:

определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

#### **TEMA 4**

# Обобщение знаний по химии за курс основной школы. Подготовка к государственной итоговой аттестации (ГИА) (11 ч)

Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Физический смысл порядкового номера элемента, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов.

Значение периодического закона. Виды химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ. Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; наличие

границы раздела фаз; тепловой эффект; изменение степеней окисления атомов; использование катализатора; направление протекания). Скорость химических реакций и факторы, влияющие на нее. Обратимость химических реакций и способы смещения химического равновесия.

Простые и сложные вещества. Металлы и неметаллы. Генетические ряды металла, неметалла и переходного металла. Оксидыи гидроксиды (основания, кислоты, амфотерные гидроксиды), соли. Их состав, классификация и общие химические свойства в свете теории электролитической диссоциации.

#### Личностные результаты обучения

Учашийся должен:

знать и понимать: основные исторические события, связанные с развитием химии и общества; достижения в области химии и культурные традиции (в частности, научные традиции) своей страны; общемировые достижения в области химии; основные принципы и правила отношения к природе; основы здорового образа жизни и здоровьесберегающих технологий;

правила поведения в чрезвычайных ситуациях, связанных с воздействием различных веществ; основные права и обязанности гражданина (в том числе учащегося), связанные с личностным, профессиональным и жизненным самоопределением;

социальную значимость и содержание профессий, связанных с химией;

*испытывать*: чувство гордости за российскую химическую науку и уважение к истории ее развития; уважение и принятие достижений химии в мире; любовь к природе;

уважение к окружающим (учащимся, учителям, родителям и др.) — уметь слушать и слышать партнера, признавать право каждого на собственное мнение, принимать решения с учетом позиций всех участников; чувство прекрасного и эстетических чувств на основе знакомства с миром веществ и их превращений; самоуважение и эмоционально-положительное отношение к себе:

*признавать:* ценность здоровья (своего и других людей); необходимость самовыражения, самореализации, социального признания;

*осознавать:* готовность (или неготовность) к самостоятельным поступкам и действиям, ответственность за их результаты; готовность (или неготовность) открыто выражать и отстаивать свою позицию и критично относиться к своим поступкам;

**проявлять:** экологическое сознание; доброжелательность, доверие и внимательность к людям, готовность к сотрудничеству и дружбе, оказанию помощи тем, кто в ней нуждается; обобщенный, устойчивый и избирательный познавательный интерес, инициативу и любознательность в изучении мира веществ и реакций; целеустремленность и настойчивость в достижении целей, готовность к преодолению трудностей; убежденность в возможности познания природы, необходимости разумного использования достижений науки и технологий для развития общества;

уметь: устанавливать связь между целью изучения химии и тем, для чего она осуществляется (мотивами); выполнять корригирующую самооценку, заключающуюся в контроле за процессом изучения химии и внесении необходимых коррективов, соответствующих этапам и способам изучения курса химии; выполнять ретроспективную самооценку, заключающуюся в оценке процесса и результата изучения курса химии основной школы, подведении итогов на основе соотнесения целей и результатов;

строить жизненные и профессиональные планы с учетом конкретных социальноисторических, политических и экономических условий; осознавать собственные ценности и соответствие их

принимаемым в жизни решениям; вести диалог на основе равноправных отношений и взаимного уважения; выделять нравственный аспект поведения и соотносить поступки (свои и других людей) и события с принятыми этическими нормами; в пределах своих возможностей противодействовать действиям и влияниям, представляющим угрозу жизни, здоровью и безопасности личности и общества.

# Учебно-тематический план 8-9 класс.

#### 8 класс

2ч в неделю, всего 68 часов

|                   | Об  | Из них                                      |                        |
|-------------------|-----|---------------------------------------------|------------------------|
| Наименование темы | щее | Практические работы                         | Контрольн<br>ые работы |
| Введение          | 5   | №1. Правила техники безопасности при работе |                        |

|                                                                |      | в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами.            |            |
|----------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------|------------|
| <b>Tema 1.</b> Атомы химических элементов                      | 10ч  |                                                                                                              | <b>№</b> 1 |
| <b>Тема 2.</b> Простые вещества                                | 7 ч  |                                                                                                              |            |
| <b>Тема 3.</b> Соединения химических элементов                 | 14 ч | №2. Анализ почвы и воды.<br>№3 Приготовление раствора сахара и<br>определение массовой доли его в растворе.  | <b>№</b> 2 |
| <b>Тема 4.</b> Изменения, происходящие с веществами            | 12ч  | №4 Наблюдения за изменениями, происходящими с горящей свечой, и их описание. №5 Признаки химических реакций. | №3         |
| Тема 5. Растворение. Растворы. Свойства растворов электролитов | 20ч  | №6. Свойства кислот, оснований, оксидов и солей.<br>№7. Решение экспериментальных задач.                     | №4         |
| Итого                                                          | 68   | 7                                                                                                            | 4          |

# Учебно-тематический план 9 класс

2ч в неделю, всего 68 часов

|                                                                                                                                                                    | Об   | Из них                                                                                                                                                                                                                                     |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Наименование темы                                                                                                                                                  | щее  | Практические работы                                                                                                                                                                                                                        | Контрольн<br>ые работы |
| Тема 1. Введение. Общая характеристика химических элементов и химических реакций. Периодический закон и Периодическая система химических элементов Д.И. Менделеева | 10ч  |                                                                                                                                                                                                                                            |                        |
| Тема 2. Металлы.                                                                                                                                                   | 17 ч | Практикум 1. Свойства металлов и их соединений (3 ч) №1. Осуществление цепочки химических превращений. №2. Получение и свойства соединений металлов. №3. Решение экспериментальных задач на распознавание и получение соединений металлов. | № 1                    |
| Тема 3. Неметаллы                                                                                                                                                  | 30 ч | Практикум 2. Свойства соединений                                                                                                                                                                                                           | <b>№</b> 2             |

|                                                                                                                  |     | неметаллов (5 ч) №4. Решение экспериментальных задач по теме «Подгруппа галогенов». №5. Решение экспериментальных задач по теме «Подгруппа кислорода». №6. Решение экспериментальных задач по теме «Подгруппа азота». №7. Решение экспериментальных задач по теме «Подгруппа углерода». №8. Получение, собирание и распознавание газов. |    |
|------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Тема 4. Обобщение знаний по химии за курс основной школы. Подготовка к государственной итоговой аттестации (ГИА) | 11ч |                                                                                                                                                                                                                                                                                                                                         | №3 |
| Итого                                                                                                            | 68  | 8                                                                                                                                                                                                                                                                                                                                       | 7  |

# Учебно-методическое и материально-техническое обеспечение образовательной деятельности 8 - 9 класс.

Для обучения учащихся основной школы в соответствии с требованиями Федерального государственного образовательного стандарта необходима реализация деятельностного подхода. Деятельностный подход требует постоянной опоры процесса обучения химии на демонстрационный эксперимент, практические занятия и лабораторные опыты, выполняемые учащимися. Кабинет химии оснащён комплектом демонстрационного и лабораторного оборудования по химии для основной школы. В кабинете химии осуществляются как урочная, так и внеурочная формы учебно-воспитательной деятельности с учащимися. Оснащение в большей части соответствует Перечню оборудования кабинета химии и включает различные типы средств обучения. Большую часть оборудования составляют учебно-практическое и учебно-лабораторное оборудование, в том числе комплект натуральных объектов, модели, приборы и инструменты для проведения демонстраций и практических занятий, демонстрационные таблицы, видео, медиа оснащение.

В комплект технических и информационно-коммуникативных средств обучения входят: компьютер, мультимедиа проектор, выход в Интернет.

Использование электронных средств обучения позволяют:

- активизировать деятельность обучающихся, получать более высокие качественные результаты обучения;
- при подготовке к ЕГЭ обеспечивать самостоятельность в овладении содержанием курса.
- формировать ИКТ компетентность, способствующую успешности в учебной деятельности;
  - формировать УУД;

#### Натуральные объекты

Натуральные объекты, используемые в обучении химии, включают в себя коллекции минералов и горных пород, металлов и сплавов, минеральных удобрений, пластмасс, каучуков, волокон и т. д.

Ознакомление учащихся с образцами исходных веществ, полупродуктов и готовых изделий позволяет получить наглядное представление об этих материалах, их внешнем виде, а также о некоторых физических свойствах.

#### Химические реактивы и материалы

Обращение со многими веществами требует строгого соблюдения правил техники безопасности, особенно при выполнении опытов самими учащимися. Все необходимые меры предосторожности указаны в соответствующих документах и инструкциях.

- 1) простые вещества медь, бром, натрий, кальций, алюминий, магний, железо;
- 2) оксиды меди (И), кальция, железа (Ш), магния;
- 3) кислоты соляная, серная, азотная;
- 4)основания гидроксид натрия, гидроксид кальция, гидроксид бария, 25% ный водный раствор аммиака
- 5)соли хлориды натрия, меди ( $\Pi$ ), алюминия, железа ( $\Pi$ ); нитраты калия, натрия, серебра; сульфаты меди ( $\Pi$ ), железа ( $\Pi$ ), железа ( $\Pi$ ), аммония; иодид калия, бромид натрия;
- 6)органические соединения этанол, уксусная кислота, метиловый оранжевый, фенолфталеин, лакмус.

#### Химическая лабораторная посуда, аппараты и приборы

Химическая посуда подразделяется на две группы: для выполнения опытов учащимися и демонстрационных опытов.

Приборы, аппараты и установки, используемые на уроках химии, подразделяют на основе протекающих в них физических и химических процессов с участием веществ, находящихся в разных агрегатных состояниях: приборы для работы с газами — получение, собирание, очистка, сушка, поглощение газов; реакции между потоками газов; реакции между газами в электрическом разряде; реакции между газами при повышенном давлении; аппараты и приборы для опытов с жидкими и твердыми веществами — перегонка, фильтрование, кристаллизация; проведение реакций между твердым веществом и жидкостью, жидкостью и жидкостью, твердыми веществами. Вне этой классификации находятся две группы учебной аппаратуры:1) для изучения теоретических вопросов химии - иллюстрация закона сохранения массы веществ, демонстрация электропроводности растворов, демонстрация движения ионов в электрическом поле; для изучения скорости химической реакции и химического равновесия; 2) для иллюстрации химических основ заводских способов получения некоторых веществ (серной кислоты, аммиака и т. п.) Вспомогательную роль играют измерительные и нагревательные приборы, различные приспособления для выполнения опытов.

#### Модели

Объектами моделирования в химии являются атомы, молекулы, кристаллы, заводские аппараты, а также происходящие процессы.

В преподавании химии используются модели кристаллических решёток графита, поваренной соли, наборы моделей атомов для составления шаростержневых моделей молекул.

#### Учебные пособия на печатной основе

В процессе обучения химии используются следующие таблицы постоянного экспонирования: «Периодическая система химических элементов Д.И. Менделеева», «Таблица растворимости кислот, оснований и солей», «Электрохимический ряд напряжений металлов», «Круговорот веществ в природе» и др.

Для организации самостоятельной работы обучающихся на уроках используют разнообразные дидактические материалы: отдельные рабочие листы — инструкции, карточки с заданиями разной степени трудности для изучения нового материала, самопроверки и контроля знаний учащихся.

Для обеспечения безопасного труда кабинете химии имеется:

- противопожарный инвентарь
- аптечку с набором медикаментов и перевязочных средств;
- инструкцию по правилам безопасности труда для обучающихся
- журнал регистрации инструктажа по правилам безопасности труда.

# VIII. Требования к уровню подготовки выпускника 9 класса

**Предметными результатами** освоения выпускниками основной школы программы по химии являются:

#### 1. В познавательной сфере:

- равать определения изученных понятий: вещество (химический элемент, атом, ион, молекула, кристаллическая решетка, вещество, простые и сложные вещества, химическая формула, относительная атомная масса, относительная молекулярная масса, валентность, оксиды, кислоты, основания, соли, амфотерность, индикатор, периодическая система, изотопы, химическая связь, электроотрицательность, степень окисления, электролит); химическая реакция (химическое уравнение, генетическая связь, окисление, восстановление, электролитическая диссоциация, скорость химической реакции);
  - формулировать периодический закон Д. И. Менделеева и раскрывать его смысл;
- описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии;
- описывать и различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции
  - классифицировать изученные объекты и явления;
- **>** наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
- желать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных;
- **с**труктурировать изученный материал и химическую информацию, полученную из других источников;
- моделировать строение атомов элементов первого третьего периодов, строение простейших молекул.

#### 2. В ценностно-ориентационной сфере:

 анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой и использованием веществ;

- разъяснять на примерах (приводить примеры, подтверждающие) материальное единство и взаимосвязь компонентов живой и неживой природы и человека как важную часть этого единства;
- **с** строить свое поведение в соответствии с принципами бережного отношения к природе.
  - 3. В трудовой сфере:
  - > планировать и проводить химический эксперимент;
- использовать вещества в соответствии с их предназначением и свойствами,
   описанными в инструкциях по применению.
  - 4. В сфере безопасности жизнедеятельности:
- **>** оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием

#### IX. Критерии и нормы оценки результатов

# Оценка устного ответа

Отметка «5»:

- ответ полный и правильный на основании изученных теорий;
- материал изложен в определенной логической последовательности, литературным языком;
  - ответ самостоятельный.

Отметка «4»:

- ответ полный и правильный на сновании изученных теорий;
- материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию учителя.

Отметка «З»:

- ответ полный, но при этом допущена существенная ошибка или ответ неполный, несвязный.

Отметка «2»:

- при ответе обнаружено непонимание учащимся основного содержания учебного материала или допущены существенные ошибки, которые учащийся не может исправить при наводящих вопросах учителя, отсутствие ответа.

#### Оценка экспериментальных умений

Оценка ставится на основании наблюдения за учащимися и письменного отчета за работу.

Отметка «5»:

- работа выполнена полностью и правильно, сделаны правильные наблюдения и выводы;
- эксперимент осуществлен по плану с учетом техники безопасности и правил работы с веществами и оборудованием;
- проявлены организационно трудовые умения, поддерживаются чистота рабочего места и порядок (на столе, экономно используются реактивы).

Отметка «4»:

- работа выполнена правильно, сделаны правильные наблюдения и выводы, но при этом эксперимент проведен не полностью или допущены несущественные ошибки в работе с веществами и оборудованием.

Отметка «3»:

- работа выполнена правильно не менее чем наполовину или допущена существенная ошибка в ходе эксперимента в объяснении, в оформлении работы, в соблюдении правил техники безопасности на работе с веществами и оборудованием, которая исправляется по требованию учителя.

Отметка «2»:

- допущены две (и более) существенные ошибки в ходе: эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники без опасности при работе с веществами и оборудованием, которые учащийся не может исправить даже по требованию учителя;
  - работа не выполнена, у учащегося отсутствует экспериментальные умения.

#### Оценка лабораторных работ

Оценка «5»:

- ставится, если учащийся выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей.

#### Оценка «4»:

- ставится, если выполнены требования к оценке «5», но было допущено два - три недочета, не более одной негрубой ошибки и одного недочёта.

#### Оценка «3»:

- ставится, если работа выполнена не полностью, но объем выполненной части таков, позволяет получить правильные результаты и выводы: если в ходе проведения опыта и измерений были допущены ошибки.

#### Оценка «2»:

- ставится, если работа выполнена не полностью и объем выполненной части работы не позволяет сделать правильных выводов: если опыты, измерения, вычисления, наблюдения производились неправильно.

Во всех случаях оценка снижается, если ученик не соблюдал требования правил безопасности труда.

#### Оценка умений решать расчетные задачи

Отметка «5»:

- в логическом рассуждении и решении нет ошибок, задача решена рациональным способом.

Отметка «4»:

- в логическом рассуждении и решении нет существенных ошибок, но задача решена нерациональным способом, или допущено не более двух несущественных ошибок.

Отметка «3»:

- в логическом рассуждении нет существенных ошибок, но допущена существенная ошибка в математических расчетах.

Отметка «2»:

- имеются существенные ошибки в логическом рассуждении и в решении;
- отсутствие ответа на задание.

# Оценка письменных контрольных работ

Отметка «5»:

- ответ полный и правильный, возможна несущественная ошибка.

Отметка «4»:

- ответ неполный или допущено не более двух несущественных ошибок.

Отметка «3»:

- работа выполнена не менее чем наполовину, допущена одна существенная ошибка и при этом две-три несущественные.

Отметка «2»:

- работа выполнена меньше чем наполовину или содержит несколько существенных ошибок;
  - работа не выполнена.

При оценке выполнения письменной контрольной работы необходимо учитывать требования единого орфографического режима.

### Оценка тестовых работ

Тесты, состоящие из пяти вопросов можно использовать после изучения каждого материала (урока). Тест из 10-15 вопросов используется для периодического контроля. Тест из 20-30 вопросов необходимо использовать для итогового контроля.

При оценивании используется следующая шкала:

для теста из пяти вопросов:

- нет ошибок оценка «5»;
- одна ошибка оценка «4»;
- две ошибки оценка «З»;
- три ошибки оценка «2».

Для теста из 30 вопросов:

- 25-30 правильных ответов оценка «5»;
- 19-24 правильных ответов оценка «4»;
- 13-18 правильных ответов оценка «З»;
- меньше 12 правильных ответов оценка «2».

# Тематическое планирование материала в 8 классе

#### ПРИЛОЖЕНИЕ 1

| <b>№</b><br>π/π | Тема                                        | Содержание                                                                                               | Целевая установка урока                                                         | Кол-во<br>часов | Планируемые результаты                                                | Использование<br>оборудования                           |
|-----------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------|---------------------------------------------------------|
| 1               |                                             | «Изучение строения                                                                                       | Знакомство с основными методами науки                                           | 1               |                                                                       | Датчик температуры (термопарный), спиртовка             |
| 2               | химии.                                      | * *                                                                                                      | Знакомство с основными методами науки                                           | 1               | процессов, требующих                                                  | Датчик температуры (термопарный), спиртовка             |
| 3               | химии.<br>Экспериментальные<br>основы химии |                                                                                                          | Дать представление о точности измерений цифровых датчиков и аналоговых приборов | 1               | требующих точности<br>показаний                                       | Датчик температуры платиновый, термометр, электрическая |
| 4               | химии.<br>Экспериментальные                 | Лабораторный опыт № 3 «Определение температуры плавления и кристаллизации олова»                         | Сформировать представление о температуре плавления, обратимости плавления и     | 1               | Знать процессы, протекающие при плавлении веществ и их кристаллизации | Датчик<br>температуры<br>(термопарный)                  |
| 5               | химические                                  | дистиллированная вода»                                                                                   | Экспериментальное определение дистиллированной и водопроводной воды             | 1               | дистиллированной, знать,                                              | Датчик<br>электропроводност<br>и, цифровой<br>микроскоп |
| 6               | химические<br>понятия.<br>Физические и      | Демонстрационный<br>эксперимент № 1<br>«Выделение и поглощение<br>тепла — признак<br>химической реакции» | Изучение химических<br>явлений                                                  | 1               | Уметь отличать физические процессы от химических реакций              | Датчик<br>температуры<br>платиновый                     |

| <b>№</b><br>п/п | Тема                                                              | Содержание                                                              | Целевая установка урока                                                                            | Кол-во<br>часов | Планируемые результаты                                                                                                     | Использование<br>оборудования           |
|-----------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 7               | Первоначальные химические понятия. Простые и сложные вещества     | эксперимент № 2                                                         | Изучение явлений при разложении сложных веществ                                                    | 1               | Знать, что при протекании реакций молекулы веществ разрушаются, а атомы сохраняются (для веществ с молекулярным строением) | Прибор для опытов с электрическим током |
| 8               | Первоначальные химические понятия. Закон сохранения массы веществ | Демонстрационный<br>эксперимент № 3 «Закон<br>сохранения массы веществ» | Экспериментальное доказательство действия закона                                                   | 1               | Знать формулировку закона и уметь применять его на практике при решении расчётных задач                                    | Весы электронные                        |
| 9               | Классы неорганических соединений.                                 |                                                                         | Экспериментально<br>определить содержание<br>кислорода в воздухе                                   | 1               | Знать объёмную долю составных частей воздуха                                                                               | Прибор для определения состава воздуха  |
| 10              | неорганических                                                    | *                                                                       | Синтез соли из кислоты и<br>оксида металла                                                         | 1               | Уметь проводить простейшие синтезы неорганических веществ с использованием инструкции                                      | Цифровой<br>микроскоп                   |
| 11              | Растворы                                                          | «Изучение зависимости                                                   | Исследовать зависимость растворимости от температуры                                               | 1               | Иметь представление о разной зависимости растворимости веществ от температуры                                              | Датчик<br>температуры<br>платиновый     |
| 12              | Растворы                                                          | «Наблюдение за ростом                                                   | Показать зависимость растворимости от температуры                                                  | 1               | Уметь использовать цифровой микроскоп для изучения формы кристаллов                                                        | Цифровой<br>микроскоп                   |
| 13              | Растворы                                                          | Лабораторный опыт № 7<br>«Пересыщенный раствор»                         | Сформировать понятия<br>«разбавленный раствор»,<br>«насыщенный раствор»,<br>«пересыщенный раствор» | 1               | Иметь представление о различной насыщенности раствора растворяемым веществом                                               | Датчик<br>температуры<br>платиновый     |

| <b>№</b><br>п/п | Тема                                                                        | Содержание                                                                  | Целевая установка урока                                                       | Кол-во<br>часов | Планируемые результаты                                                                 | Использование оборудования                                                                                     |
|-----------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 14              | Растворы                                                                    | Практическая работа № 3 «Определение концентрации веществ колориметрическим | Сформировать представление о концентрации вещества и количественном анализе   | 1               | Уметь определять концентрацию раствора, используя инструкцию                           | Датчик оптической плотности                                                                                    |
| 15              | Кристаллогидраты                                                            | Лабораторный опыт № 8                                                       | Сформировать понятие «Кристаллогидрат».                                       | 1               | Знать способность кристаллогидратов разрушаться при нагревании                         | Датчик<br>температуры<br>платиновый                                                                            |
| 16              | Классы неорганических соединений. Основания                                 |                                                                             | Сформировать представление о рН среды как характеристики кислотности раствора | 1               | Уметь определять pH растворов                                                          | Датчик рН                                                                                                      |
| 17              | Классы неорганических соединений.                                           | Лабораторный опыт № 9<br>«Определение рН<br>различных сред»                 | Сформировать представление о шкале рН                                         | 1               | Применять умения по определению рН в практической деятельности                         | Датчик рН                                                                                                      |
| 18              | Классы<br>неорганических<br>соединений.<br>Химические<br>свойства оснований | , 1                                                                         | Экспериментально доказать химические свойства оснований                       | 1               | Понимать сущность процесса нейтрализации и применять процесс нейтрализации на практике | Датчик рН, дозатор объёма жидкости, бюретка, датчик температуры платиновый, датчик давления, магнитная мешалка |
| 19              | Химическая связь                                                            |                                                                             | Показать зависимость физических свойств веществ от типа химической связи      | i               | Уметь определять тип кристаллических решёток по температуре плавления                  | Датчик<br>температуры<br>платиновый,<br>датчик<br>температуры<br>термопарный                                   |

Тематическое планирование учебного материала в 9 классе

| <b>№</b><br>п/п | Тема                                                               | Содержание                                                                            | Целевая установка урока                                                                  | Кол-во<br>часов | Планируемые результаты                                               | Использование<br>оборудования       |
|-----------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------|-------------------------------------|
| 1               | Теория<br>электролитической<br>диссоциации                         | растворения веществ в                                                                 | Показать, что растворение веществ имеет ряд признаков химической реакции                 |                 | физико-химический процесс                                            | Датчик<br>температуры<br>платиновый |
| 2               | Теория<br>электролитической<br>диссоциации                         | ^                                                                                     | Введение понятий<br>«электролит» и<br>«неэлектролит»                                     | 1               | 1                                                                    | Датчик<br>электропроводност<br>и    |
| 3               | Теория<br>электролитической<br>диссоциации                         | «Влияние растворителя на диссоциацию»                                                 | Сформировать представление о влиянии растворителя на диссоциацию электролита             | 1               | · ·                                                                  | Датчик<br>электропроводност<br>и    |
| 4               | Теория электролитической диссоциации. Сильные и слабые электролиты | «Сильные и слабые                                                                     | Экспериментально ввести понятие «слабый электролит»                                      |                 | •                                                                    | Датчик<br>электропроводност<br>и    |
| 5               | Теория<br>электролитической<br>диссоциации                         | электропроводности<br>растворов сильных                                               | Сформировать представление о зависимости электропроводности растворов от концентрации    | 1               | Знать зависимость электропроводности растворов от концентрации ионов | Датчик<br>электропроводност<br>и    |
| 6               | Теория<br>электролитической<br>диссоциации                         | Практическая работа № 2<br>«Определение<br>концентрации соли по<br>электропроводности | Закрепить представление о зависимости электропроводности растворов от концентрации ионов |                 | определять концентрацию                                              | Датчик<br>электропроводност<br>и    |

| <b>№</b><br>п/п | Тема                                                              | Содержание                                                                                    | Целевая установка урока                                                            | Кол-во<br>часов | Планируемые результаты                                                                                                                                                   | Использование<br>оборудования                                             |
|-----------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 7               | Теория электролитической диссоциации. Реакции ионного обмена      | Лабораторный опыт № 4 «Взаимодействие гидроксида бария с серной кислотой»                     | Исследовать особенности протекания реакции нейтрализации                           | 1               | Применять знания о реакции нейтрализации в иных условиях                                                                                                                 | Датчик электропроводност и, дозатор объёма жидкости, бюретка              |
| 8               | Теория электролитической диссоциации                              | Лабораторный опыт № 5<br>«Образование солей<br>аммония»                                       | Экспериментально показать образование ионов при реакции аммиака с кислотами        | 1               | Знать, что все растворимые в воде соли являются сильными электролитами                                                                                                   | Датчик<br>электропроводност<br>и                                          |
| 9               | Химические реакции. Окислительно- восстановительные реакции (ОВР) | Лабораторный опыт № 6 «Изучение реакции взаимодействия сульфита натрия с пероксидом водорода» | Изучение окислительновосстановительных процессов, протекающих с выделением энергии | 1               | Иметь представление о тепловом эффекте окислительно-восстановительных реакций                                                                                            | Датчик<br>температуры<br>платиновый                                       |
| 10              | Химические<br>реакции. ОВР                                        | Лабораторный опыт № 7<br>«Изменение рН в ходе<br>окислительно-<br>восстановительных           | Доказать, что в процессе протекания ОВР возможно образование кислоты или щелочи    | 1               | Иметь представления о различных продуктах окислительно-восстановительных реакций                                                                                         | Датчик рН                                                                 |
| 11              | Химические<br>реакции. ОВР                                        | Лабораторный опыт № 8 «Сравнительная характеристика восстановительной способности металлов»   | Количественно охарактеризовать восстановительную способность металлов              | 1               | Знать, что металлы являются восстановителями с разной восстановительной способностью                                                                                     | Датчик<br>напряжения                                                      |
| 12              | Химические реакции. Скорость химической реакции                   | Демонстрационные опыты № 2 «Изучение влияния различных факторов на скорость реакции»          | Изучить зависимость скорости реакции от различных факторов                         | 2               | Знать зависимость скорости реакции от различных факторов — температуры, концентрации реагирующих веществ, катализатора, природы веществ, площади соприкосновения веществ | Прибор для иллюстрации зависимости скорости химической реакции от условий |

| №  | Тема                                    | Содержание                                                                           | Целевая установка урока                                                         | Кол-во | Планируемые результаты                                                                                                                             | Использование                                                                               |
|----|-----------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 13 | Неметаллы.<br>Галогены                  |                                                                                      | Экспериментальное изучение физических и химических свойств хлора                | 1      | Знать физические и химические свойства галогенов. Уметь записывать уравнения реакций галогенов с металлами, их различную окислительную способность | Аппарат для проведения химических процессов (АПХР)                                          |
|    |                                         | Демонстрационный опыт № 4 «Изучение свойств сернистого газа и сернистой кислоты»     | Изучить свойства сернистого газа                                                | 1      | Знать физические и химические свойства сернистого газа. Уметь записывать уравнения реакций газа с водой, со щелочами                               | Аппарат для<br>проведения<br>химических<br>реакций (АПХР)                                   |
| 15 | Неметаллы. Аммиак                       | аммиака»                                                                             | Экспериментально доказать принадлежность раствора аммиака к слабым электролитам | 1      | Знать, что раствор аммиака в воде — слабый электролит. Уметь определять это свойство с помощью датчика электропроводности                          | Датчик<br>электропроводност<br>и                                                            |
| 16 | Металлы. Кальций.<br>Соединения кальция | Лабораторный опыт № 10<br>«Взаимодействие<br>известковой воды с<br>углекислым газом» | Экспериментально установить образование средней и кислой соли                   | 1      | Знать свойства соединений кальция и его значение в природе и жизни человека                                                                        | Датчик электропроводност и, магнитная мешалка, прибор для получения газов или аппарат Киппа |
| 17 | Металлы. Железо                         | «Окисление железа во                                                                 | Исследовать процесс электрохимической коррозии железа в воздухе                 | 1      | Знать, что процесс коррозии металлов протекает в присутствии воды и кислорода. Знать факторы, ускоряющие процесс коррозии                          | Датчик давления                                                                             |